纳米材料行业现状篇1
关键词:纳米复合材料;工程材料;光学材料;磁性材料
中图分类号:TB33文献标识码:A文章编号:1009-2374(2014)06-0007-02进入21世纪,各领域对高性能材料的依赖程度越来越高,纳米材料是一种应用性能很高的工程材料,其应用范围非常广泛。2008年,美国举办了材料科学学会,会议指出:“纳米材料工程将成为21世纪工程材料的重要组成部分。”纳米复合材料是纳米工程材料的重要分支,目前,很多企业已纷纷将技术研发目标转向纳米复合材料,并逐渐加大研究力度,扩大技术应用范围。
1纳米复合材料理论概述
通过对纳米复合材料进行系统分析可知,可以按照材料性质将其划分为三种类型。
1.1单体复合材料
单体符合材料是不同种类、成分的纳米粒子经过工业处理复合而成的,这种纳米固体的物理结构非常稳定,且化学性质也很可靠。因为组成成分少,所以单体复合材料纳米粒子的复合最完全,其分子结构之间的基团链不会随温度、压力的变化而变化。
1.2双体复合材料
双体复合材料可以通过工业处理将纳米粒子均匀的分散到二维薄膜材料中,粒子在弥散过程中会产生均匀或不均匀两种分布状态,这两种分布状态的复合结构都具有一定的稳定性。均匀和非均匀弥散状态的薄膜基体表现出的层状结构具有明显的差异性,纳米粒子分散混乱的材料的构成层级种类很多,分散有序、均匀的材料层级种类较少。
1.3多体复合材料
多体复合材料可以通过工业处理将纳米粒子均匀的分散到三维固体中,纳米粒子会通过外力作用,深入固体组织结构,改变其分子集团的分布情况,进而影响三维固体的物理性能和化学性能。多体复合材料的应用前景非常好,是当今纳米材料科研工作者研究的重点
问题。
2纳米复合材料发展趋势分析
2.1纳米复合涂层材料
纳米复合涂层材料的化学性质稳定,并且柔韧性好、硬度高、耐腐蚀性强,在工程材料表面涂抹这种防护材料不仅可以防止工程材料的破损,还能增加工程材料的防护功能。随着现代工业技术的发展,复合涂层材料得到了显著发展,单一纳米结构逐渐转变为多层纳米结构。美国著名纳米工程材料研究专家普修斯于2012年成功研制出了复合涂层纳米材料,这类纳米材料的抗氧化性能非常好,可以在高温条件下保持不褪色、不热化。对其材料进行强度检测可发现,该材料的涂层硬度高达20.SGpa,是碳钢强度的35倍。具体工艺流程如下:首先,用激光蒸发法去除钢表面的纳米结构,将金刚石纳米粒子涂抹在钢表面;之后,重复上述工艺步骤,在钢表面上涂抹两层金刚石纳米粒子;最后,在高温条件下对钢表面材料进行挤压复合。经过多次挤压,纳米复合涂层材料就此形成,经过加工,钢材料的硬度提高了23.4倍。
2.2高力学性能材料
高力学性能是突出材料的强度、硬度等物理性能,工程材料经过力学改性之后,其物理性质会发生翻天覆地的变化。对原始材料进行改性实验虽然在一定程度可以提高材料的某些力学性能,但这种性能的提升具有很强的局限性,并不能真实的体现出材料的力学极限。经过纳米复合材料改性,高力学性能材料得到了非常显著的研究成果。高力学性能材料发展趋势,主要表现在以下几个方面:
(1)高强度合金。采用晶化法可以大大提升纳米复合合金材料的力学性能,对金属进行纳米复合实验,可以将材料转变成复合型纳米金属,如将铝进行纳米复合实验,铝会转化为过度族金属,这种金属结构的延展性和强度非常高。
(2)陶瓷增韧。纳米粒径很小,所以纳米粒子很容易就可渗透到细小分子结构中,粘合关联性并不紧密的各分子基团。在陶瓷增韧领域纳米复合材料起到了很好的促进作用,在碳化硅粉末中加入粒径为10μm的碳化硅粗粉,在高温高压条件下进行合成,合成之后碳化硅的物理性质会发生很大的改变,煅烧后的陶瓷材料的柔韧性明显增强了,断裂韧性提高了34.23%。
2.3高分子基纳米复合材料
高分子材料近几年在我国工业领域应用十分广泛,高分子材料的物理性能稳定且可塑性好,所以在装饰行业中的发展前景非常广阔。采用纳米复合方式结合高分子基是我国纳米工程材料正在研究探讨的重要课题,目前我国科研专家已初步完成了部分高分子基纳米复合材料的研制工作。具体表现在:将铁和铜粉末按照4:5的比例进行研磨,研磨均匀后用高粒子显微仪器提取铁铜合金粉体,通过显微镜观察可知这种粉体的晶体结构稳定,晶粒间的距离很短。这种粉体和环氧树脂基团进行复合实验可以研制出高强度的金刚石材料,并且其材料还具有很强的静电屏蔽性能。
2.4磁性材料
磁性材料是我国工业材料中研究难度最大的课题之一,因为磁性材料的电磁环境不好判断,所以在应用时经常会遇到复合材料因磁性过大导致使用。随着纳米复合材料的研发和投入使用,磁性材料将进入全新的发展阶段。人们在颗粒膜中发现了巨磁阻效应,纳米粒子在空间流动会被周围磁场带入顺磁基体当中,空间中的铜、铁、镍等磁性粒子都会附着在纳米粒子上。经过金属粒子和纳米粒子的复合,颗粒膜材料不仅会拥有强大的电磁感应,还会具有较高的耐热性能。
2.5光学材料
传统光学材料的综合应用能力很差,其材料的物理性能大多只能满足导电性和导热性,其硬度和稳定性都很差。纳米复合材料诞生之后,人们逐渐找到了纳米粒子的发光原理。不发光的工程材料当减小到纳米粒子大小时,其粒子周围会因光色折射产生一定的光。在可见光范围内这些粒子会不断产生新的光,虽然这些材料的纳米粒子发出的光并不明显,且稳定度也很差,但是科研专家可以从这方面入手,研究纳米复合材料的发光性能。将具有代表性的工程材料作为可发光体,并对其分子结构转化为纳米粒子大小的发光体系,探讨如何提高其发光强度、完善其结构发光性能。由此可见,纳米复合很可能为开拓新型发光材料提供了一个途径。纳米材料的光吸收和微波吸收的特性也是未来光吸收材料和微波吸收材料设计的一个重要依据。
3结语
通过上文论述可知,利用纳米粒子超强的附着能力,可以将纳米工艺和传统材料有机的结合在一起,这种复合型纳米材料具有重要发展意义。当今社会纳米复合材料的研究价值最高,其不仅在材料研究领域占有重要地位,在企业的发展中也是不可或缺的重要组成。
参考文献
[1]牟季美,张立德.纳米复合材料发展趋势[J].工
程塑料应用,2012,13(8):113-126.
[2]太惠玲.导电聚合物纳米符合薄膜的制备及其氨敏
特性研究[J].电子科技大学学报(社会科学
版),2011,13(11):136-138.
[3]吴人洁.下世纪复合材料发展趋势[J].工程塑料
应用,2012,12(12):114-127.
[4]高焱敏,王萍,王少明.聚合物基纳米复合材料
的研究进展[J].材料科学与工艺,2012,14
(9):105-113.
[5]姚胜红.碳纳米管/聚偏氟乙烯高介电纳米复合材
料的显微结构控制与介电性能的关联[J].北京化
工大学学报(社会科学版),2013,13(22):
113-125.
[6]丁国芳,王建华,黄奕刚.插层复合法制备聚合物
纳米复合材料的研究进展[J].塑料科技,2012,
纳米材料行业现状篇2
关键词:纳米技术及其相关产业;概念界定;体系辨识。
当前,“发展纳米技术及其相关产业”这一口号,已被提升到实现中国梦苏州篇章、苏州实施创新引领战略进而华丽转身的重大战略高度,那么什么是纳米技术及其相关产业,搞清楚这一问题,则无论对于苏州的决策者、研究者还是实践者来讲,都具有重要的建设性意义。
去年,我们在执行一项有关促进苏州市纳米技术及其相关产业发展的重大软科学课题时,首当其冲地遭遇到这一问题。通过文献检索与分析,我们发现,由于纳米技术及其相关产业纷繁复杂,纳米科学技术界尚未对该一问题形成共识;同时,社会科学理论界卷入纳米领域研究较少,可资借鉴的成果太少。然而,这一问题的解决将直接影响到我们研究项目的进一步履行,为此,我们设立了一个研究子课题,本文即是该子课题研究成果,在此抛砖引玉,期望不仅对苏州市,也对国内其他正在促进纳米技术及其相关产业发展的地区起到启迪作用。
一、什么是纳米技术及其相关产业
要搞清楚纳米技术及其相关产业首先要理解纳米与纳米尺度范围,以及纳米尺度范围内物质的质变特性及其意义,本节我们将据此入手,进而界定纳米技术及其相关产业的概念。
1.纳米与纳米尺度范围
纳米(Nanometer,缩写nm)是计量学中的长度单位。1纳米(nm)等于10-3微米(mm),等于10-6毫米(mm),等于10-9米。1—100纳米(nm)被纳米学界公认确定为纳米尺度。通过不同物体相对尺度大小比较(见图1)及纳米尺度范围内常见球形物体大小比较(见图2),可以加深对于纳米及纳米尺度范围概念的理解。
2.纳米尺度范围内物质的质变特性及其意义
科学家发现,当物质小到1~100纳米时,由于其量子效应、物质的局域性及巨大的表面及界面效应,物质的很多性能将发生质变,呈现出许多既不同于宏观物体,又不同于单个孤立原子的奇异现象(白春礼,2001)。即在原子、分子及纳米尺度上,物质表现出极其新颖的物理、化学和生物学特性,该特性能被人类学习、掌握、控制和利用,从而使得人类社会现存的一切发生翻天覆地的变化。
3.国外科学家如何理解与解释纳米技术
看一看国外科学家如何理解与解释纳米技术或许对我们会有很大帮助,以下是国外科学家对于什么是纳米技术的典型解释(转引自彭练矛,2011):
“Thetermnanotechnologymeansdifferentthingstodifferentpeople.Itusedtocoveranythingfrommakingmicroelectromechanicalsystems(MEMS)tocreatingdesignerproteins.”
“Whateverwecallit,itshouldletus
——Getessentiallyeveryatomintherightplace.
——Makealmostanystructureconsistentwiththelawsofphysicsandchemistrythatwecanspecifyinatomicdetails.
——Havemanufacturingcostsnotgreatlyexceedingthecostoftherequiredrawmaterialsandenergy.”
这两段英文的中文翻译如下:纳米技术术语意味着对于不同对象人群的不同事情。它通常涵盖从制造微电子机械系统到创造人造蛋白质的所有事情。然而,不管我们如何称呼,纳米技术的实质应该包括:每一个原子应被安排在合适的位置,任何相应建构应符合原子水平上的物理和化学原理,原材料和能源等相应制造成本应不是太贵。
从以上国外科学家对于什么是纳米技术的典型解释中我们可以发现,纳米技术(nanotechnology)在国外是一个约定俗成的术语,是对纳米领域新生事物科学研究、技术研发和工程应用的统称,纳米技术尚是一个发展中的概念,目前还没有被严格界定。
4.纳米技术概念
经过上面的铺垫,现在我们可以来探讨界定纳米技术概念。对于什么是纳米技术,麻省理工学院(MIT)的德累克斯勒(Drexler)教授曾作出过一个解释:
“在分子水平上,通过操纵原子来控制物质结构,利用单个原子组建分子系统,据此制备不同类型的纳米器件”(Drexler,1990)。
而在中文语境中,谈到技术往往还牵连到科学与工程,对此,白春礼院士也有一个解释:
“纳米科技是20世纪80年代末、90年代初才发展起来的前沿、交叉性新兴学科领域,是指在纳米尺度上研究物质(包括原子、分子的操纵)的特性和相互作用,以及利用这些特性的多学科交叉的科学和技术”(白春礼,2001)。
白院士所指的纳米科技既包括纳米科学又涵盖纳米技术。实际上,中文语境中的纳米科技常常是纳米科学研究、技术研发和工程应用的统称。指在纳米尺度上研究物质和体系的现象、规律及其相互作用,重新认识自然界,发现新现象和新知识,并通过直接操控原子、分子结构的技术来创造对人类有用的新的物质和产品。
综上所述,可见所谓纳米技术是指涉及到纳米科学研究、材料发展和制备、器件制造以及产品开发生产之所有技术的总和。
5.纳米技术相关产业概念
知道了什么是纳米技术以后就较易分辨纳米技术相关产业。过去的二、三十年,纳米科学技术的进步,尤其是纳米技术的应用已经和正在对人类社会的经济发展、社会进步和国防安全产生重大影响。然而,这仅仅是开始,纳米科学研究、技术发展和工程应用已经和正在引发一场新的工业革命,证据表明,纳米技术在材料、信息、能源、环境、生命、生物、军事、制造、纺织、染料、涂料、食品等产业领域都具有广泛而重要的应用。而一旦这些产业领域中纳米技术应用产品批量化、商品化和规模化,则自然形成一个个纳米技术相关产业。
二、纳米技术体系范畴
界定了纳米技术及其相关产业概念后,本节与下节我们可以转而讨论纳米技术体系范畴以及纳米技术相关产业体系范畴。
技术来源于科学,是理论知识应用于实践、解决实际问题的方法和手段,因此谈到纳米技术不能不涉及到纳米科学。尽管目前学术界对于纳米科学的内涵和分类尚存在着不同的认识和提法,但对于这一新兴领域多学科交叉特性的认识是一致的。一般而言,纳米科学可以包括纳米材料物理学、纳米材料化学、纳米材料学、纳米测量学、纳米电子学、纳米机械学和纳米生物医学等,由此也产生了按照这一体系分类的纳米技术。
然而,白春礼院士(2001)认为这种与传统学科紧密联系的分类方式无法简单便捷地勾勒出纳米科技的大致轮廓,而且各类别之间又有交叉和重叠。因此,他建议将纳米科学研究分为“纳米材料”、“纳米器件”和“纳米检测和表征”三大领域,“其中纳米材料是纳米科技的基础;纳米器件的研制水平和应用程度是人类是否进入纳米科技时代的重要标志;纳米尺度的检测与表征是纳米科技研究必不可少的手段和理论与实验的重要基础”(白春礼,2003)。据此,纳米技术体系又可主要由上述三大范畴来表达。
我们认为上述与传统学科紧密联系的分类及三个大类的简单分类都有各自的道理和应用价值,前一个分类便于整合发展纳米学科知识和实施教育培训,而后一个分类则更多地聚焦到纳米科学技术当前关键发展领域,重点特出、应用性强。若与纳米技术相关产业相联系,则我们更倾向于并将更多地采纳和应用后一个分类。
无独有偶,日本专利局《专利申请技术动向调查报告》中提供了一个与应用实际联系密切的纳米技术分类(见图3,该图由DRM咨询公司补充修改而完成),该分类基本遵循上述三个大类分类范畴,并采用图式标识了各主要应用领域中的发展状况,恰好为三大类纳米技术分类体系作了一个生动的注解,虽然尚未达到完整完善的程度,但已有很大的参考价值。
沿着三大类纳米技术分类思路继续往下走,可以得到图4所示纳米技术分类体系。其中一级状态子目录包括“纳米检测和表征技术”、“纳米材料制备技术”和“纳米器件制造技术”。而每个一级目录又可进一步产生二级目录,如纳米检测和表征技术可分为“扫描探针显微技术”和“原子级和超精密加工技术”;纳米材料制备技术可分为“化学制备技术”、“物理制备技术”和“综合制备技术”;纳米器件制造技术可分为“LIGA制造技术”、“超精密机械加工技术”、“特种加工技术”、“注塑成形加工技术”和“机械组装技术”等。需要说明的是,这一分类只是大体上勾勒了纳米技术发展现状,提供了一个整体认识把握的粗略框架。现实纳米世界中的实际情况则更为纷繁复杂,不仅存在着旁支末叶,也可以进一步细分和再细分。
三、纳米技术相关产业体系范畴
应用上述“纳米材料”、“纳米器件”和“纳米检测和表征”三大范畴的纳米技术分类思想,可以推导出纳米技术相关产业体系范畴,如图5所示:
如图5所示,首先,纳米技术相关产业可以被界定为纳米材料产业、纳米器件产业和纳米检测仪器设备产业,其中纳米材料是纳米技术相关产业得以生存发展的原始基础,没有纳米材料则一切无从谈起;纳米器件系纳米材料进一步加工组合后的产物,是延伸发展各种纳米技术应用产品的基础;而纳米检测仪器和设备则是发展纳米材料、器件及其延伸产品的必不可少的硬件手段,缺乏这些手段,事情就无法进行。
上述三者一方面构成了纳米技术相关产业生存发展的基础,另一方面,正是基于这种基础性和不可替代性,它们各自能够发展成三个供需旺盛的分支产业,并在每个分支产业下面各自生成若干数量不等的子产业。
此外,鉴于纳米材料和纳米器件能够被应用到各个新兴和传统产业领域,创造出各种各样新颖独特、质量上乘、性能优异的新产品,因此,在上述三个分支产业以外,又可辨识出纳米材料应用和纳米器件应用两个分支产业。当然,这两个分支产业下面更能各自生成若干数量不等的子产业。
若从事情发生的先后次序来看,纳米科学技术研究发展的需要首先造就了纳米检测仪器设备产业和纳米材料产业。结合纳米检测手段和纳米材料的研究创造了纳米器件,纳米器件(如纳米传感器)的推广应用催生了纳米器件产业。接着,纳米材料和器件在各个领域的广泛应用开发出许多新颖产品和更新换代产品,从而发展出形形的纳米产品产业,并进一步促进纳米材料、器件和检测仪器设备产业的发展。这就是纳米技术相关产业相伴共生、互促共长的内在逻辑。
在现实生活中,纳米材料产业和纳米检测仪器设备产业已经形成一定规模,发展相对成熟。处于纳米技术高端的纳米器件产业(电子/光电子器件、量子器件、以及微/纳机电系统)目前尚处在发展成长过程中,这是纳米大国共同关注、竞相角逐的领域,也是进一步发展的方向,其中属于MEMS/NEMS范畴的微纳传感器分支产业已经初具规模。同时,纳米材料和器件的应用已经渗透进入许多不同的经济和社会领域,例如,电子和信息、生物与医药、环境保护等,从而增殖衍生出发展状况各异、纷繁复杂的纳米技术产品和产业。
当然,换一个角度,如果忽略纳米技术居中扮演的角色,这一复杂逻辑体系中各个分支仍可分属于自己的母体产业,例如,纳米材料产业可归属于材料产业,纳米检测仪器设备产业可归属于仪器设备产业等等,由此也揭示了纳米技术相关产业所具有的双重产业属性。
四、结语
以上我们通过运用相关文献资料,进行抽丝剥茧式的逻辑分析,界定了纳米技术及其相关产业的概念,进而揭示了纳米技术及其纳米技术相关产业的体系范畴,从而为从社会科学角度研究促进纳米技术及其相关产业发展(譬如制定技术/产业发展路线图)奠定了有关客体对象的认知基础。
当前,纳米技术与信息技术和生物技术一起并列为世界三大高技术前沿热点领域,而纳米技术又在促进信息技术和生物技术发展中扮演了重要角色,正在悄然引发着新一轮工业革命,成为国际高科技及其产业竞争的制高点。期待我们这一抛砖引玉的工作能为苏州/中国抢占这一制高点作出些微贡献。
参考文献
赵康等。《苏州市纳米技术及其相关产业发展战略研究总论》,古吴轩出版社,2012。
杨辉。《纳米科学技术概论》(未发表PPT课件),2010。
白春礼。纳米科技及其发展前景。《科学通报》,2001/2。
白春礼。全面理解纳米科技内涵,促进纳米科技在我国的健康发展。《微纳电子技术》,2003/1。
彭练矛。《纳米科技和纳米电子学》(未发表PPT课件),2011。
基金项目:苏州市2012年度重大软科学课题,项目编号:SR201201。
作者简介:赵康(1950–),男,江苏苏州人,博士,教授,博导,主要研究方向为公共管理、咨询学、专业社会学。顾茜茜与陈加丰均为赵的博士研究生,赵迪凡为项目研究助理。
WhatIsNanotechnologyandItsRelatedIndustries
——ConceptDefinationandSystemIdentification
ZHAOKangGUXixiCHENJiafengZHAODifan
(SchoolofPoliticsandPublicAdminstration,SoochowUniversity,Suzhou215021,China)
纳米材料行业现状篇3
关键词:纳米材料;纳米尺度;阻燃材料
中图分类号:TB383.1文献标识码:A文章编号:1006-8937(2013)02-0179-02
当前,塑料、橡胶和纤维等聚合物应用十分广泛,但其易燃性给其使用和推广造成了一定的影响。阻燃材料尽管在一定程度上起到了阻滞燃烧、延缓火灾蔓延、争取逃生和救援时间等积极的作用,但也在力学性能、性价比、环境污染等方面存在不足。随着纳米材料在力学、电磁学、热学、光学等多个领域的应用,纳米技术和纳米材料显现出广阔的发展前景。纳米阻燃材料的研制和发展有利于克服和改进传统材料的缺点,蕴含着巨大的社会效应和经济效益。
1纳米材料简介
纳米材料是指在结构上具有纳米尺度及其相应功能特征的材料,1纳米为十亿分之一米,纳米尺度一般是指1~100nm。材料的结构和粒径进入纳米尺度范围时,就表现出表面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应等多种特殊效应,从而使材料表现出多种奇特的功能。纳米材料按照材质分类,可以分为纳米金属材料、纳米非金属材料、纳米高分子材料和纳米材料。纳米技术和多种材料的结合,大大改变了材料的综合特性,为进一步优化材料的功能提供了有力的技术支持。
2阻燃材料的分类和要求
阻燃材料可分为无机和有机、含卤和无卤等多种类型。无机主要指氢氧化铝、氢氧化镁、硅系、三氧化二锑等阻燃材料体系,有机主要以卤系、氮系和磷系为主,它们通过复配或者反应得到形成添加型或者反应型复合材料,进而起到阻燃作用。相比较而言,无机阻燃材料具有低成本,热学性能好,燃烧时有毒气体少等优点,但是它们也具有机械性能差、填充量大且与基材相容性差等缺陷。有机型阻燃材料具有阻燃性能好,与基材相容性好,填充量小等优点,但是具有燃烧时发烟量大且产生有毒气体等缺陷。因此发展低烟、低毒、无卤、物理机械性能优越等环保型阻燃材料成为一直以来重要的研究课题,纳米技术的出现和发展为解决上述阻燃材料的现有缺陷提供了可能。研究表明,纳米阻燃材料应满足下列要求:第一,材料应符合环保要求,燃烧时产生的毒性气体少。第二,材料应具有功能性强、阻燃效率高等特点,同时应克服传统阻燃材料机械物理性能方面的现有缺陷,拓展材料应用范围。第三,降低综合成本,增强材料的性价比。
3纳米阻燃材料的类型
将传统的阻燃剂颗粒细化到纳米级应用到相关材料中即可获得纳米阻燃材料。纳米技术的应用、纳米级颗粒的获得以及纳米尺度所表现出来的特有的多种效应大大增强了阻燃剂和材料间的相容性,一定程度上减少了阻燃剂的应用量,同时也提高了阻燃性能,提升了阻燃材料的性价比。目前,已研制的常用纳米阻燃复合材料大致有以下几种。
3.1聚合物粘土纳米材料
粘土纳米阻燃材料涉及阳离子粘土矿物蒙脱石、阴离子粘土矿物层状双金属氢氧化物、非离子型粘土矿物高岭石等原料,借助插层方法修饰,获得对聚甲基丙烯酸甲酯(PMMA)和聚丙烯(PP)等有效的复合阻燃材料。粘土类阻燃剂的层状硅酸盐中含有炭化层,在高温下能够俘获一些自由基,在改变了材料力学性能的同时,也提高了材料的阻燃性能,还避免了添加卤系阻燃剂后燃烧时发烟量大、产生腐蚀性和毒性气体等缺陷。火灾时,硅酸盐碳化层减缓了材料燃烧时挥发物逸出的速度从而使得粘土类纳米材料在凝聚相分解过程中挥发物的溢出率低。
3.2纳米氢氧化镁阻燃材料
纳米级氢氧化镁阻燃材料的阻燃性、发烟量与基材的相容性等性能要优于微米级的氢氧化镁阻燃材料的相应性能。在一定剂量下,纳米级氢氧化镁阻燃体可以达到UL94标准的V-0级。金属氢氧化物本身优势明显,关键是添加量要比较大,通常在60%以上,而高填充量对阻燃材料的物理机械性能影响较大,而纳米技术正好能很好地解决阻燃剂和基体间的分散性和相容性的问题,两种技术的结合大大提升了氢氧化镁阻燃剂的应用和阻燃后材料的阻燃性能。纳米氢氧化镁阻燃材料具有无卤、低烟、无毒、无滴落、耐酸、稳定性好、分解温度高、不腐蚀设备等多种优异性能,具有广阔的应用前景。
3.3纳米碳酸钙类复合材料
用锡酸锌包覆纳米碳酸钙粉体并应用到聚氯乙烯(PVC)中,得到40~60nm的产品粒径,减少了增塑剂在PVC中的用量,提高了产品的加工性能,再加上硬质PVC本身的高含氯量和高阻燃性,极限氧指数(LOI)可以达到45%,获得了优良的阻燃复合材料。经过甲基丙烯酸处理的纳米碳酸钙/聚苯乙烯(PS)原位复合材料粒径也在
100nm以内,也具有较好的阻燃性能。此外也可以应用脂肪酸、钛酸酯偶联剂以及纳米碳酸钙经过表面处理得到聚丙烯/纳米碳酸钙复合材料,经过实验和应用,都在保持较好阻燃性能的基础上,材料的力学性能方面得到了很大的改善,材料的抗冲击强度也有所提高。
3.4纳米级氧化锑阻燃材料
纳米级氧化锑阻燃PVC材料的阻燃性能高,发烟量低,其性能优于传统的PVC材料的相应性能,而且适合用于纺织品中。纳米级氧化锑颗用量少,而且不会阻塞机器的喷丝孔,使得纺织品能够阻燃。另外,纳米级的氧化锑材料的比表面积很大,对一些纺织品的渗透性能好,具有很强的粘附力,由此形成的纺织材料还具有很好的耐洗牢度,不易褪色。纳米氧化锑具有成本低,平均粒度小,在聚酯材料中分散均匀,相容性好等优点。
3.5EVA/二氧化硅纳米复合材料
纳米二氧化硅改性的聚合物已经获得了广泛的应用,原因是经过纳米化和改性,所获得的纳米复合材料具有质轻、高强度、高韧性等多种优点。EVA类纳米复合材料中纳米填充层在内层聚合物外面形成一层隔离层,从而强化了炭化过程,材料降解过程延长,用锥形量热计测量出的热释放速率峰值极低,阻燃性能较传统阻燃材料有大幅提高。在力学性能方面,研究表明,EVA/二氧化硅复合材料中的体积填充分数为4%时,复合材料的拉伸强度最高,约为基体的两倍,这也充分显现出了纳米技术在提升复合材料的物理机械性能方面的重要作用。
4纳米阻燃材料制备工艺进展
纳米材料的制备方法主要有以下几种。
①溶胶―凝胶法。溶胶―凝胶法是制备纳米材料比较普遍的制备方法。其流程是:将金属氧化物或金属盐溶于水中,通过水解反应后,形成溶胶状纳米级微粒,再将溶剂蒸发,之后形成凝胶物体。这样就形成了有机聚合物与无机分子相互渗透,具有多层有序结构的阻燃材料。该方法化学反应温和,无机成分和有机成分相互掺混,结构紧密,但也存在凝胶干燥时易出现材料收缩脆裂等缺点。
②共沉淀法。共沉淀法是指先期形成的无机纳米粒子与有机聚合物混合沉淀形成阻燃材料的方法。这种方法中,纳米粒子与材料合成分开制作,纳米粒子的尺寸与结构可以很好的控制,同时纳米粒子在聚合物中均匀分布,综合性能好。但该方法中纳米粒子易团聚,均匀分散纳米微粒是最大难题。共沉淀法可分为溶液共沉淀法、乳液共沉淀法与熔融共沉淀法等多种方式。
③插层法。插层法的流程是将纳米微粒制成层状,再将其插入有机聚合物层之间,导致二者达到纳米级复合。这类方法有聚合插层法、熔融插层法及溶液插层法等类型。
④原位共聚法。原位共聚法是指将纳米粒子均匀分散在溶液中,再借助加热、辐射等手段,使聚合物与纳米粒子之间发生聚合等一系列反应,最后得到纳米级分散的阻燃材料。该方法得到的阻燃材料具有粒子纳米特性好,层间焓熵势垒低等优点。
⑤原位自组装法。原位自组装法是指利用聚合物分子与纳米粒子间的分子间力、层间静电力等作用,在原位进行自组装,生成无机主晶核,最后聚合物再将生成的晶体包围在内。这种方法合成双羟基纳米复合物比较有利,纳米相能有序分布。
5纳米阻燃材料的展望
在阻燃剂领域中,无机添加型阻燃剂应用最早,用量最大。如锑系、铝系、磷系、硼系阻燃剂等等。但目前主要存在阻燃剂和基材相容性差和对物理机械性能影响较大等问题。研究表明纳米技术的利用可以提高塑料制品的阻燃性以及机械性能,加强纤维制品的阻燃性以及抗静电能力,加强橡胶制品的阻燃性以及减少其燃烧时的有毒气体的释放和发烟量。纳米阻燃材料可以在发挥无机类阻燃材料低卤或无卤、低烟、低腐蚀等优势的基础上,借助纳米技术大大提高无机类阻燃材料的综合性能。
此外纳米阻燃材料也将在提高材料的热稳定性、减少材料在使用中的团聚、增强阻燃剂和材料间的用量、粒径、层状结构的优化和复配、优化材料的储运和添加过程、提升材料的阻燃效果、促进材料的多功能化等方面得到进一步发展。在纳米阻燃复合材料的微结构及形成机理、材料的阻燃机理细节等基础理论方面加强研究,不断加速发展朝阳的纳米阻燃材料事业,有利于相关产品产业化的顺利实现和拓展。
综上所述,纳米阻燃材料具有阻燃性能好,环保效果好,并且燃烧时放出的有毒气体少,填充用量少,产品趋于多功能化发展的特点,可广泛应用于汽车、航空、电子家电等多个行业,具有很大的发展空间。但是纳米阻燃材料的发展,仍有很多亟待解决的实际问题,如纳米粒子形态的控制、纳米粒子分布工艺以及多功能化的统一等。相信随着高分子材料科学与工程技术的不断进步,随着纳米技术的出现、应用和快速发展,纳米阻燃材料研究必将会取得长足的进步,为更好地保护人民生命财产安全提供坚实的物质技术保障。
参考文献:
[1]欧育湘,陈宇,王筱梅.阻燃高分子材料[M].北京:国防工业出版社,2001.
纳米材料行业现状篇4
40多年以前,科学家们就认识到实际材料中的无序结构是不容忽视的。许多新发现的物理效应,诸如某些相转变、量子尺寸效应和有关的传输现象等,只出现在含有缺陷的有序固体中。事实上,如果多晶体中晶体区的特征尺度(晶粒或晶畴直径或薄膜厚度)达到某种特征长度时(如电子波长、平均自由程、共格长度、相关长度等),材料的性能将不仅依赖于晶格原子的交互作用,也受其维数、尺度的减小和高密度缺陷控制。有鉴于此,HGleitCr认为,如果能够合成出晶粒尺寸在纳米量级的多晶体,即主要由非共格界面构成的材料[例如,由50%(invol.)的非共植晶界和50%(invol.)的晶体构成],其结构将与普通多晶体(晶粒大于lmm)或玻璃(有序度小于2nm)明显不同,称之为"纳米晶体材料"(nanocrystallinematerials)。后来,人们又将晶体区域或其它特征长度在纳米量级范围(小于100nn)的材料广义定义为"纳米材料"或"纳米结构材料"(nanostructuredmaterials)。由于其独特的微结构和奇异性能,纳米材料引起了科学界的极大关注,成为世界范围内的研究热点,其领域涉及物理、化学、生物、微电子等诸多学科。目前,广义的纳米材料的主要包括:
l)清洁或涂层表面的金属、半导体或聚合物薄膜;2)人造超晶格和量子讲结构;功半结晶聚合物和聚合物混和物;4)纳米晶体和纳米玻璃材料;5)金属键、共价键或分子组元构成的纳米复合材料。
经过最近十多年的研究与探索,现已在纳米材料制备方法、结构表征、物理和化学性能、实用化等方面取得显著进展,研究成果日新月异,研究范围不断拓宽。本文主要从材料科学与工程的角度,介绍与评述纳米金属材料的某些研究进展。
2纳米材料的制备与合成
材料的纳米结构化可以通过多种制备途径来实现。这些方法可大致归类为"两步过程"和"一步过程"。"两步过程"是将预先制备的孤立纳米颗粒因结成块体材料。制备纳米颗粒的方法包括物理气相沉积(PVD)、化学气相沉积(CVD)、微波等离子体、低压火焰燃烧、电化学沉积、溶胶一凝胶过程、溶液的热分解和沉淀等,其中,PVD法以"惰性气体冷凝法"最具代表性。"一步过程"则是将外部能量引入或作用于母体材料,使其产生相或结构转变,直接制备出块体纳米材料。诸如,非晶材料晶化、快速凝固、高能机械球磨、严重塑性形变、滑动磨损、高能粒子辐照和火花蚀刻等。目前,关于制备科学的研究主要集中于两个方面:l)纳米粉末制备技术、理论机制和模型。目的是改进纳米材料的品质和产量;2)纳米粉末的固结技术。以获得密度和微结构可控的块体材料或表面覆层。
3纳米材料的奇异性能
1)原子的扩散行为
原子扩散行为影响材料的许多性能,诸如蠕变、超塑性、电性能和烧结性等。纳米晶Co的自扩散系数比Cu的体扩散系数大14~16个量级,比Cu的晶界自扩散系数大3个量级。Wurshum等最近的工作表明:Fe在纳米晶N中的扩散系数远低于早期报道的结果。纳米晶Pd的界面扩散数据类似于普通的晶界扩散,这很可能是由于纳米粒子固结成的块状试样中的残留疏松的影响。他们还报道了Fe在非晶FeSiBNbCu(Finemete)晶化形成的复相纳米合金(由Fe3Si纳米金属间化合物和晶间的非晶相构成)中的扩散要比在非晶合金中快10~14倍,这是由于存在过剩的热平衡空位。Fe在Fe-Si纳米晶中的扩散由空位调节控制。
2)力学性能
目前,关于纳米材料的力学性能研究,包括硬度、断裂韧性、压缩和拉伸的应力一应变行为、应变速率敏感性、疲劳和蠕变等已经相当广泛。所研究的材料涉及不同方法制备的纯金属、合金、金属间化合物、复合材料和陶瓷。研究纳米材料本征力学性能的关键是获得内部没有(或很少)孔隙、杂质或裂纹的块状试样。由于试样内有各种缺陷,早期的许多研究结果已被最近取得的结果所否定。样品制备技术的日臻成熟与发展,使人们对纳米材料本征力学性能的认识不断深入。
许多纳米纯金属的室温硬度比相应的粗晶高2~7倍。随着晶粒的减小,硬度增加的现象几乎是不同方法制备的样品的一致表现。早期的研究认为,纳米金属的弹性模量明显低于相应的粗晶材料。例如,纳米晶Pd的杨氏和剪切模量大约是相应全密度粗晶的70%。然而,最近的研究发现,这完全是样品中的缺陷造成的,纳米晶Pd和Cu的弹性常数与相应粗晶大致相同,屈服强度是退火粗晶的10~15倍。晶粒小子50nm的Cu韧性很低,总延伸率仅1%~4%,晶粒尺寸为110nm的Cu延伸率大于8%。从粗晶到15urn,Cu的硬度测量值满足HallPetch关系;小于15nm后,硬度随晶粒尺寸的变化趋于平缓,虽然硬度值很高,但仍比由粗晶数据技HallPetch关系外推或由硬度值转换的估计值低很多。不过,纳米晶Cu的压缩屈服强度与由粗晶数据的HallPetCh关系外推值和测量硬度的值(Hv/3)非常吻合,高密度纳米晶Cu牙DPd的压缩屈服强度可达到1GPa量级。
尽管按照常规力学性能与晶粒尺寸关系外推,纳米材料应该既具有高强度,又有较高韧性。但迄今为止,得到的纳米金属材料的韧性都很低。晶粒小于25nm时,其断裂应变仅为<5%,远低于相应粗晶材料。主要原因是纳米晶体材料中存在各类缺陷、微观应力及界面状态等。用适当工艺制备的无缺陷、无微观应力的纳米晶体Cu,其拉伸应变量可高达30%,说明纳米金属材料的韧性可以大幅度提高。纳米材料的塑性变形机理研究有待深入。
纳米晶金属间化合物的硬度测试值表明,随着晶粒的减小,在初始阶段(类似于纯金属盼情况)发生硬化,进一步减小晶粒,硬化的斜率减缓或者发生软化。由硬化转变为软化的行为是相当复杂的,但这些现象与样品的制备方法无关。材料的热处理和晶粒尺寸的变化可能导致微观结构和成份的变化,如晶界、致密性、相变、应力等,都可能影响晶粒尺寸与硬度的关系。
研究纳米晶金属间化合物的主要动机是探索改进金属间化合物的室温韧性的可能性。Bohn等首先提出纳米晶金属化合物几种潜在的优越性。其中包括提高强度和韧性。Haubold及合作者研究了IGC法制备的NiAl的力学性能,但仅限于单一样品在不同温度退火后的硬度测量。Smith通过球磨NiAl得到晶粒尺寸从微米级至纳米级的样品,进行了"微型盘弯曲试验",观察到含碳量低的材料略表现出韧性,而含碳多的材料没有韧性。最近Choudry等用"双向盘弯曲试验"研究了纳米晶NiAl,发现晶粒小于10nm时,屈服强度高干粗晶NiAl,且在室温下有韧性,对形变的贡献主要源于由扩散控制的晶界滑移。室温压缩实验显示由球磨粉末固结成的纳米晶Fe-28Al-2Cr具有良好的塑性(真应变大于1.4),且屈服强度高(是粗晶的1O倍)。测量TiAl(平均晶粒尺寸约10nm)的压缩蠕变(高温下测量硬度随着恒载荷加载时间的变化)表明,在起始的快速蠕变之后,第二阶段蠕变非常缓慢,这意味着发生了扩散控制的形变过程。低温时(低于扩散蠕变开始温度),纳米晶的硬度变化很小。观察到的硬度随着温度升高而下降,原因之一是压头载荷使样品进一步致密化,而主要是因为材料流变加快。Mishra等报道,在750~950°C,10-5~10-3s-1的应变速率范围,纳米晶Ti-47.5Al-3Cr(g-TiAl)合金的形变应力指数约为6,说明其形变机制为攀移位错控制。
值得注意的是,最近报道了用分子动力学计算机模拟研究纳米材料的致密化过程和形变。纳米Cu丝的模拟结果表明,高密度晶界对力学行为和塑性变形过程中的晶界迁移有显著影响。纳米晶(3~5nm)Ni在低温高载荷塑性变形的模拟结果显示,其塑性变形机制主是界面的粘滞流动、晶界运动和晶界旋转,不发生开裂和位错发散,这与粗晶材料是截然不同的。
3)纳米晶金属的磁性
早期的研究发现。纳米晶Fe的饱和磁化强度试比普通块材a-Fe约低40%。Wagner等用小角中子散射(SANS)实验证实纳米晶Fe由铁磁性的晶粒和非铁磁性(或弱铁磁性)的界面区域构成,界面区域体积约占一半。纳米晶Fe的磁交互作用不仅限于单个晶粒,而且可以扩展越过界面,使数百个晶粒磁化排列。
Daroezi等证实球磨形成的纳米晶Fe和Ni的饱和磁化强度与晶粒尺寸(50mm~7nm)无关,但纳米晶的饱和磁化曲线形状不同于微米晶材料。随着晶粒减小,矫顽力显著增加。Schaefer等报道,纳米晶Ni中界面原子的磁拒降低至0.34mB/原子(块状Ni为0.6mB/原子),界面组份的居里温度(545K)比块状晶体Ni的(630K)低。最近的研究还发现,制备时残留在纳米晶Ni中的内应力对磁性的影响很大,纳米晶Ni的饱和磁化强度与粗晶Ni基本相同。
Yoshizawa等报道了快淬的FeCuNbSiB非晶在初生晶化后,软磁性能良好,可与被莫合金和最好的Co基调合金相媲美,且饱和磁化强度很高(Bs约为1.3T)。其典型成份为Fe73.5Cu1Nb3Si13.5B9称为"Finemet"。性能最佳的结构为a-Fe(Si)相(12~20nm)镶嵌在剩余的非晶格基体上。软磁性能好的原因之一被认为是铁磁交互作用。单个晶粒的局部磁晶体各向异性被有效地降低。其二是晶化处理后,形成富Si的a-Fe相,他和磁致伸缩系数ls下降到2′10-6。继Finemet之后,90年代初又发展了新一族纳米晶软磁合金Fe-Zr-(Cu)-B-(Si)系列(称为'Nanoperm")。退火后,这类合金形成的bcc相晶粒尺寸为10~20nm,饱和磁化强度可达1.5~1.7T,磁导率达到48000(lkHz)。铁芯损耗低,例如,Fe86Zr7B6Cu1合金的铁芯损耗为66mW·g-1(在1T,50Hz条件下),比目前做变压器铁芯的Fe78Si9B13非晶合金和bccFe-3.5%Si合金小45%和95%,实用前景非常诱人。
4)催化及贮氢性能
在催化剂材料中,反应的活性位置可以是表面上的团簇原子,或是表面上吸附的另一种物质。这些位置与表面结构、晶格缺陷和晶体的边角密切相关。由于纳米晶材料可以提供大量催化活性位置,因此很适宜作催化材料。事实上,早在术语"纳米材料"出现前几十年,已经出现许多纳米结构的催化材料,典型的如Rh/Al2O3、Pt/C之类金属纳米颗粒弥散在情性物质上的催化剂。已在石油化工、精细化工合成、汽车排气许多场合应用。
Sakas等报道了纳米晶5%(inmass)Li-MgO(平均直径5.2nm,比表面面积750m2·g-1)的催化活性。它对甲烷向高级烃转化的催化效果很好,催化激活温度比普通Li浸渗的MgO至少低200°C,尽管略有烧结发生,纳米材料的平均活性也比普通材料高3.3倍。
Ying及合作者利用惰性气氛冷凝法制成高度非化学当量的CeO2-x纳米晶体,作为CO还原SO2、CO氧化和CH4氧化的反应催化剂表现出很高的活性。活化温度低于超细的化学当量CeO2基材料。例如,选择性还原SO2为S的反应,可在500°C实现100%转换,而由化学沉淀得到的超细CeO2粉末,活化温度高达600°C。掺杂Cu的Cu-CeO2-x纳米复合材料可以使SO2的反应温度降低到420°C。另外,CeO2-x纳米晶在SO2还原反应中没有活性滞后,且具有超常的抗CO2毒化能力。还能使CO完全转化为CO2的氧化反应在低于100°C时进行,这对冷起动的汽车排气控制非常有利。值得注意的是这样的催化剂仅由较便宜的金属构成,毋须添加资金属元素。
FeTi和Mg2Ni是贮氢材料的重要候选合金。其缺点是吸氢很慢,必须进行活化处理,即多次地进行吸氢----脱氢过程。Zaluski等最近报道,用球磨Mg和Ni粉末可直接形成化学当量的Mg2Ni,晶粒平均尺寸为20~30nm,吸氢性能比普通多晶材料好得多。普通多晶Mg2Ni的吸氢只能在高温下进行(如果氢压力小于20Pa,温度必须高于250°C),低温吸氢则需要长时间和高的氢压力,例如200°C、120bar(lbar=0.1Mpa),2天。纳米晶Mg2Ni在200°C以下,即可吸氢,毋须活化处理。300°C第一次氢化循环后,含氢可达~3.4%(inmass)。在以后的循环过程中,吸氢比普通多晶材料快4倍。纳米晶FeTi的吸氢活化性能明显优于普通多晶材料。普通多晶FeTi的活化过程是:在真空中加热到400~450℃,随后在约7Pa的H2中退火、冷却至室温再暴露于压力较高(35~65Pa)的氢中,激活过程需重复几次。而球磨形成的纳米晶FeTi只需在400℃真空中退火0.5h,便足以完成全部的氢吸收循环。纳米晶FeTi合金由纳米晶粒和高度无序的晶界区域(约占材料的20%~30%)构成。
4纳米材料应用示例
目前纳米材料主要用于下列方面:
l)高硬度、耐磨WC-Co纳米复合材料
纳米结构的WC-Co已经用作保护涂层和切削工具。这是因为纳米结构的WC-Co在硬度、耐磨性和韧性等方面明显优于普通的粗晶材料。其中,力学性能提高约一个量级,还可能进一步提高。高能球磨或者化学合成WC-Co纳米合金已经工业化。化学合成包括三个主要步骤:起始溶液的制备与混和;喷雾干燥形成化学性均匀的原粉末;再经流床热化学转化成为纳米晶WC-Co粉末。喷雾干燥和流床转化已经用来批量生产金属碳化物粉末。WC-Co粉末可在真空或氢气氛下液相烧结成块体材料。VC或Cr3C2等碳化物相的掺杂,可以抑制烧结过程中的晶粒长大。
2)纳米结构软磁材料
Finemet族合金已经由日本的HitachiSpecialMetals,德国的VacuumschmelzeGmbH和法国的Imply等公司推向市场,已制造销售许多用途特殊的小型铁芯产品。日本的AlpsElectricCo.一直在开发Nanoperm族合金,该公司与用户合作,不断扩展纳米晶Fe-Zr-B合金的应用领域。
3)电沉积纳米晶Ni
电沉积薄膜具有典型的柱状晶结构,但可以用脉冲电流将其破碎。精心地控制温度、pH值和镀池的成份,电沉积的Ni晶粒尺寸可达10nm。但它在350K时就发生反常的晶粒长大,添加溶质并使其偏析在晶界上,以使之产生溶质拖拽和Zener粒子打轧效应,可实现结构的稳定。例如,添加千分之几的磷、流或金属元素足以使纳米结构稳定至600K。电沉积涂层脉良好的控制晶粒尺寸分布,表现为Hall-Petch强化行为、纯Ni的耐蚀性好。这些性能以及可直接涂履的工艺特点,使管材的内涂覆,尤其是修复核蒸汽发电机非常方便。这种技术已经作为EectrosleeveTM工艺商业化。在这项应用中,微合金化的涂层晶粒尺寸约为100nm,材料的拉伸强度约为锻造Ni的两倍,延伸率为15%。晶间开裂抗力大为改善。
4)Al基纳米复合材料
Al基纳米复合材料以其超高强度(可达到1.6GPa)为人们所关注。其结构特点是在非晶基体上弥散分布着纳米尺度的a-Al粒子,合金元素包括稀土(如Y、Ce)和过渡族金属(如Fe、Ni)。通常必须用快速凝固技术(直接淬火或由初始非晶态通火)获得纳米复合结构。但这只能得到条带或雾化粉末。纳米复合材料的力学行为与晶化后的非晶合金相类似,即室温下超常的高屈服应力和加工软化(导致拉神状态下的塑性不稳定性)。这类纳米材料(或非晶)可以固结成块材。例如,在略低于非晶合金的晶化温度下温挤。加工过程中也可以完全转变为晶体,晶粒尺寸明显大干部份非晶的纳米复合材料。典型的Al基体的晶粒尺寸为100~200nm,镶嵌在基体上的金属间化合物粒子直径约50nm。强度为0.8~1GPa,拉伸韧性得到改善。另外,这种材料具有很好的强度与模量的结合以及疲劳强度。温挤Al基纳米复合材料已经商业化,注册为GigasTM。雾化的粉末可以固结成棒材,并加工成小尺寸高强度部件。类似的固结材料在高温下表现出很好的超塑性行为:在1s-1的高应变速率下,延伸率大于500%。
5结语
在过去十多年里,尽管纳米材料的研究已经取得了显著进展,但许多重要问题仍有待探索和解决。诸如,如何获得清洁、无孔隙、大尺寸的块体纳米材料,以真实地反映纳米材料的本征结构与性能?如何开发新的制备技术与工艺,实现高品质、低成本、多品种的纳米材料产业化?纳米材料的奇异性能是如何依赖于微观结构(晶粒尺寸与形貌、晶界等缺陷的性质、合金化等)的?反之,如何利用微观结构的设计与控制,发展具有新颖性能的纳米材料,以拓宽纳米材料的应用领域?某些传统材料的局域纳米化能否为其注入新的生命力?如何实现纳米材料的功能与结构一体化?如何使纳米材料在必要的后续处理或使用过程中保持结构与性能的稳定性?等等。这些基本问题是进一步深入研究纳米材料及其实用化的关键,也是纳米材料研究被称为"高风险与高回报并存"的原因。
纳米材料行业现状篇5
关键词:纳米材料;涂料产业;应用
中图分类号:F767.4文献标识码:A
一、对纳米材料的认识
(一)纳米材料的概述
1、纳米材料是指由尺寸介于原子、分子和宏观体系之间的纳米粒子组成的新一代材料。而纳米技术是研究物质组成体系的运动规律和相互作用以及在应用中实现特有功能和智能作用的一种科学技术。纳米涂料是利用纳米粒子抗紫外线的性能对涂料进行改性,提高涂料的某些性能。纳米涂料也是纳米复合涂料,是在涂料生产过程中加入纳米粒子,从而产生许多优异性能,使纳米涂料具有优异的力学、热学、光学及电磁学性能,这些都是传统涂料不能比拟的,而且添加不同的纳米粒子便生产出不同功能的纳米涂料,从而扩大了涂料的应用范围。
2、纳米涂料的发展:首先,纳米材料在我国的发展已经很广泛,在市场上也取得较好的反应,纳米建筑涂料是纳米涂料用量最大的品种之一,也是提升传统涂料的重点领域。近几年来,纳米材料的发展更为迅速,在建筑行业中,主要被用于改善建筑内墙涂料的抗菌性和建筑外墙涂料的耐候性,已经逐渐形成一种产业。但是还是落后于发达国家,国外的纳米材料的应用,对于纳米涂料的应用,国外对其的开发起步较早并形成产业化,美国对于纳米材料的应用主要用于绝缘涂料、豪华轿车面漆以及军事方面,还开展了在包装上使用阻隔性涂层、透明并耐磨性涂料、光致变色涂料等纳米涂料的应用研究。而日本主要在由光催化进行自动清洁涂料、静电屏蔽涂料的研究方面取得成效并将其发展为产业化。
(二)纳米材料的物理性能
纳米材料中能级分裂和电子布局的变化;纳米材料电子的强关联或相关性;纳米材料具备的激子过程和激发态;纳米材料的表面态与表面结构:纳米材料占比例较大的是的其表面,当纳米材料减少到10nm时,体内原子和表面原子的数目比将达到50%。表面原子与体内原子所处的化学环境截然不同,因此会有表面相形成。但是,由于普通材料中,表面相受到比例小的影响,局限性较大。对于纳米材料来说,由于自身表象与体相比例相差不大,因此,在许多物理变化以及化学变化中的作用显著,而且更加利于人们对其进行研究;纳米材料的量子隧穿与纳米尺度的耦合:目前改性涂料所使用纳米材料一般为半导体纳米材料,如纳米SiO2、TiO2、ZnO等,半导体纳米材料比较特殊;具有光学性;纳米半导体粒子,1-100nm。由于量子尺寸效应差异较大,因此目前最活跃的研究领域之一就是纳米半导体粒子的光化学性质和光物理性质,对于纳米半导体粒子所具有的室温光致发光及超快速的光学非线性响应等特性更加受到关注。一般情况下,当导体激子玻尔半径与导体粒子尺寸半径极其相近时,随着导体粒子尺寸的变化,其导体的有效带隙也随之发生变化。导体尺寸越小,其导体的有效带隙越多,其相应的荧光光谱和吸收光谱会发生蓝移,最终形成能级在能带中。
(三)纳米材料的其他性能
1、光学性能:当纳米微粒的粒径与电子的德布罗意波长、超导相干波长以及玻尔半径相当时,其具有较为显著的尺寸效应。同时,纳米材料的比表面使处于小颗粒内部的电子、原子以及处于表面态的电子、原子与的行为有很大的差别,影响纳米微粒的光学特性与纳米材料的这种量子尺寸效应和表面效应有很大的关系。这是同样材质纳米材料的宏观大块物体不具备的。例如SiO2、TiO2、ZnO等,能够很好的吸收紫外光,而其中一些氧化物几乎不吸收紫外光,例如亚微米的TiO2。由于这些纳米材料具有良好的半导体特性,因此容易吸收紫外光,其主要原因是由于电子被激发发生跃迁,从而吸收紫外光线。纳米材料与具有相同材质的大块材料相比,纳米材料在吸收紫外光线过程中,会出现蓝移现象,出现蓝移现象的原因有,量子尺寸发生变化,能隙变宽,光吸收靠近短波。另一种是表面效应。大的表面张力使晶格畸变,晶格常数变小。
2、吸附性能:当不同相相接触并且互相结合时,就是吸附现象。纳米微粒与材质相同的一些材料相比吸附性较强,主要是由于其比表面积较大,并且其表面得原子不能足够配位。影响纳米材料吸附性能的因素较多,其中,溶液性质、被吸附物质的性质、溶剂性质都可能对其产生影响。比如,水溶液的PH值不同,纳米材料微粒的电性也不相同,有可能带正电、也有可能带负电、还有可能呈中性。这些粒子所形成的吸附键不同,其吸附作用也具有差异。一些纳米材料能够利用气体,形成吸附层,如纳米氧化物可以与空气中的一些气体结合形成吸附表层。气体不同,形成的吸附层也不相同。
二、纳米材料及其技术在涂料中的应用
(一)TiO2在涂料中的应用
1、纳米TiO2具有光学效应,其粒径发生改变,光学效应也发生变化。纳米TiO2中的金红石型材料能够变色,角度不同,颜色随之发生改变。多应用于汽车喷漆中,能够产生一些很神奇的变化。利用纳米TiO2中的紫外吸收特性,对汽车面漆的耐候性能有较大的提升。除此之外,纳米TiO2还具有光催化特性,利用其这一特性,能够对空气产生净化作用,并且对于空气中的其他污染物进行降解,保护环境。
2、TiO2的光催化效应及应用:纳米二氧化钛具有高的光催化活性,是一种光催化半导体抗菌剂,在波长小于400nm的光照下,能吸收能量高于其禁带宽度的短波光辐射,产生电子跃迁,价带电子被激发到导带,形成空穴-电子对,并将能量传递到周围介质,诱发光化学反应,具有光催化能力。一般抗菌剂有杀菌作用,但不能分解毒素,而二氧化钛利用生成的活性氧杀菌,并且能使细菌死后产生的内毒素分解。纳米TiO2广泛应用于自洁陶瓷、玻璃以及厨房和医院设施中,一些高速公路两侧的护墙上也涂有纳米TiO2以消除汽车尾气的影响。
3、TiO2的紫外屏蔽应用:纳米TiO2的小尺寸效应、量子效应和诱导效应可使光吸收带蓝移,产生强的紫外吸收。纳米TiO2具有很好的紫外线屏蔽作用,也是一种防老化材料,可将其均匀分散到涂料中制成紫外线屏蔽涂层和抗老化涂层。纳米TiO2作为一种良好的永久性紫外线吸收材料还可用于配制耐久型外用透明面漆,一般用于木器、家具、文物保护等领域。
(二)SiO2在涂料中的应用
1、纳米SiO2是无定型白色粉末,是一种无毒,无味,无污染的无机非金属材料,表面存在不饱和的残键和不同键和状态的羟基,其分子结构呈三维网状结构如图1。
图一纳米SiO2的三维结构图
2、纳米颗粒的比表面积和表面张力都很大,容易相互吸附而发生团聚。而纳米粒子如果不能真正的以纳米级分散在涂料中,就失去了其应有的作用。添加纳米SiO2的涂料具有防流挂,施工性能良好,尤其是抗沾污性大大提高,具有优良的自清洁性能和附着力。纳米二氧化硅具有极强的紫外吸收、红外反射特性,它添加在涂料中,能对涂料形成屏蔽作用,达到抗紫外老化和热老化的目的,同时增加涂料的隔热性。
(三)纳米CaCO3在涂料中的应用
纳米碳酸钙的主要作用是改善涂料的性能,使涂料的触变性更好,在施工的过程中防止流挂并增加涂料的贮存稳定性。纳米碳酸钙改善涂料触变性的主要原因是由于纳米碳酸钙粒子表面相互聚集的氢键作用力不强,很容易被剪切力切开,在使用的时候这些氢键在外部剪切力的作用下又可以迅速的恢复,能够迅速的重整结构。纳米碳酸钙对涂膜有一定的补强作用,同时还具备其他纳米材料的普遍共性“蓝移”现象。从纳米碳酸钙的结构来看,部分纳米粒子聚集并形成一次链状结构,这种结构可以将涂料的结构化水平提高,在与聚合物混合时形成的物理缠结能力增强,从而增加涂膜补强效果。
结束语:
纳米材料具有其独特的优势,在涂料产业中受到广泛的应用,将纳米材料及其纳米技术应用在涂料产业中,可以对涂料品质有很大的提升,纳米技术的发展前景还非常广阔,对于其在应用过程中出现的一些问题,还需要结合先进的科学技术解决。
参考文献:
[1]左美祥等,纳米Siox在涂料中的分散及改性作用,现代涂料与涂装,2001:02
纳米材料行业现状篇6
40多年以前,科学家们就认识到实际材料中的无序结构是不容忽视的。许多新发现的物理效应,诸如某些相转变、量子尺寸效应和有关的传输现象等,只出现在含有缺陷的有序固体中。事实上,如果多晶体中晶体区的特征尺度(晶粒或晶畴直径或薄膜厚度)达到某种特征长度时(如电子波长、平均自由程、共格长度、相关长度等),材料的性能将不仅依赖于晶格原子的交互作用,也受其维数、尺度的减小和高密度缺陷控制。有鉴于此,HGleitCr认为,如果能够合成出晶粒尺寸在纳米量级的多晶体,即主要由非共格界面构成的材料[例如,由50%(invol.)的非共植晶界和50%(invol.)的晶体构成],其结构将与普通多晶体(晶粒大于lmm)或玻璃(有序度小于2nm)明显不同,称之为"纳米晶体材料"(nanocrystallinematerials)。后来,人们又将晶体区域或其它特征长度在纳米量级范围(小于100nn)的材料广义定义为"纳米材料"或"纳米结构材料"(nanostructuredmaterials)。由于其独特的微结构和奇异性能,纳米材料引起了科学界的极大关注,成为世界范围内的研究热点,其领域涉及物理、化学、生物、微电子等诸多学科。目前,广义的纳米材料的主要??ǎ?BR>l)清洁或涂层表面的金属、半导体或聚合物薄膜;2)人造超晶格和量子讲结构;功半结晶聚合物和聚合物混和物;4)纳米晶体和纳米玻璃材料;5)金属键、共价键或分子组元构成的纳米复合材料。
经过最近十多年的研究与探索,现已在纳米材料制备方法、结构表征、物理和化学性能、实用化等方面取得显著进展,研究成果日新月异,研究范围不断拓宽。本文主要从材料科学与工程的角度,介绍与评述纳米金属材料的某些研究进展。
2纳米材料的制备与合成
材料的纳米结构化可以通过多种制备途径来实现。这些方法可大致归类为"两步过程"和"一步过程"。"两步过程"是将预先制备的孤立纳米颗粒因结成块体材料。制备纳米颗粒的方法包括物理气相沉积(PVD)、化学气相沉积(CVD)、微波等离子体、低压火焰燃烧、电化学沉积、溶胶一凝胶过程、溶液的热分解和沉淀等,其中,PVD法以"惰性气体冷凝法"最具代表性。"一步过程"则是将外部能量引入或作用于母体材料,使其产生相或结构转变,直接制备出块体纳米材料。诸如,非晶材料晶化、快速凝固、高能机械球磨、严重塑性形变、滑动磨损、高能粒子辐照和火花蚀刻等。目前,关于制备科学的研究主要集中于两个方面:l)纳米粉末制备技术、理论机制和模型。目的是改进纳米材料的品质和产量;2)纳米粉末的固结技术。以获得密度和微结构可控的块体材料或表面覆层。
3纳米材料的奇异性能
1)原子的扩散行为
原子扩散行为影响材料的许多性能,诸如蠕变、超塑性、电性能和烧结性等。纳米晶Co的自扩散系数比Cu的体扩散系数大14~16个量级,比Cu的晶界自扩散系数大3个量级。Wurshum等最近的工作表明:Fe在纳米晶N中的扩散系数远低于早期报道的结果。纳米晶Pd的界面扩散数据类似于普通的晶界扩散,这很可能是由于纳米粒子固结成的块状试样中的残留疏松的影响。他们还报道了Fe在非晶FeSiBNbCu(Finemete)晶化形成的复相纳米合金(由Fe3Si纳米金属间化合物和晶间的非晶相构成)中的扩散要比在非晶合金中快10~14倍,这是由于存在过剩的热平衡空位。Fe在Fe-Si纳米晶中的扩散由空位调节控制。
2)力学性能
目前,关于纳米材料的力学性能研究,包括硬度、断裂韧性、压缩和拉伸的应力一应变行为、应变速率敏感性、疲劳和蠕变等已经相当广泛。所研究的材料涉及不同方法制备的纯金属、合金、金属间化合物、复合材料和陶瓷。研究纳米材料本征力学性能的关键是获得内部没有(或很少)孔隙、杂质或裂纹的块状试样。由于试样内有各种缺陷,早期的许多研究结果已被最近取得的结果所否定。样品制备技术的日臻成熟与发展,使人们对纳米材料本征力学性能的认识不断深入。
许多纳米纯金属的室温硬度比相应的粗晶高2~7倍。随着晶粒的减小,硬度增加的现象几乎是不同方法制备的样品的一致表现。早期的研究认为,纳米金属的弹性模量明显低于相应的粗晶材料。例如,纳米晶Pd的杨氏和剪切模量大约是相应全密度粗晶的70%。然而,最近的研究发现,这完全是样品中的缺陷造成的,纳米晶Pd和Cu的弹性常数与相应粗晶大致相同,屈服强度是退火粗晶的10~15倍。晶粒小子50nm的Cu韧性很低,总延伸率仅1%~4%,晶粒尺寸为110nm的Cu延伸率大于8%。从粗晶到15urn,Cu的硬度测量值满足HallPetch关系;小于15nm后,硬度随晶粒尺寸的变化趋于平缓,虽然硬度值很高,但仍比由粗晶数据技HallPetch关系外推或由硬度值转换的估计值低很多。不过,纳米晶Cu的压缩屈服强度与由粗晶数据的HallPetCh关系外推值和测量硬度的值(Hv/3)非常吻合,高密度纳米晶Cu牙DPd的压缩屈服强度可达到1GPa量级。
尽管按照常规力学性能与晶粒尺寸关系外推,纳米材料应该既具有高强度,又有较高韧性。但迄今为止,得到的纳米金属材料的韧性都很低。晶粒小于25nm时,其断裂应变仅为<5%,远低于相应粗晶材料。主要原因是纳米晶体材料中存在各类缺陷、微观应力及界面状态等。用适当工艺制备的无缺陷、无微观应力的纳米晶体Cu,其拉伸应变量可高达30%,说明纳米金属材料的韧性可以大幅度提高。纳米材料的塑性变形机理研究有待深入。
纳米晶金属间化合物的硬度测试值表明,随着晶粒的减小,在初始阶段(类似于纯金属盼情况)发生硬化,进一步减小晶粒,硬化的斜率减缓或者发生软化。由硬化转变为软化的行为是相当复杂的,但这些现象与样品的制备方法无关。材料的热处理和晶粒尺寸的变化可能导致微观结构和成份的变化,如晶界、致密性、相变、应力等,都可能影响晶粒尺寸与硬度的关系。
研究纳米晶金属间化合物的主要动机是探索改进金属间化合物的室温韧性的可能性。Bohn等首先提出纳米晶金属化合物几种潜在的优越性。其中包括提高强度和韧性。Haubold及合作者研究了IGC法制备的NiAl的力学性能,但仅限于单一样品在不同温度退火后的硬度测量。Smith通过球磨NiAl得到晶粒尺寸从微米级至纳米级的样品,进行了"微型盘弯曲试验",观察到含碳量低的材料略表现出韧性,而含碳多的材料没有韧性。最近Choudry等用"双向盘弯曲试验"研究了纳米晶NiAl,发现晶粒小于10nm时,屈服强度高干粗晶NiAl,且在室温下有韧性,对形变的贡献主要源于由扩散控制的晶界滑移。室温压缩实验显示由球磨粉末固结成的纳米晶Fe-28Al-2Cr具有良好的塑性(真应变大于1.4),且屈服强度高(是粗晶的1O倍)。测量TiAl(平均晶粒尺寸约10nm)的压缩蠕变(高温下测量硬度随着恒载荷加载时间的变化)表明,在起始的快速蠕变之后,第二阶段蠕变非常缓慢,这意味着发生了扩散控制的形变过程。低温时(低于扩散蠕变开始温度),纳米晶的硬度变化很小。观察到的硬度随着温度升高而下降,原因之一是压头载荷使样品进一步致密化,而主要是因为材料流变加快。Mishra等报道,在750~950°C,10-5~10-3s-1的应?渌俾史段В?擅拙?i-47.5Al-3Cr(g-TiAl)合金的形变应力指数约为6,说明其形变机制为攀移位错控制。
值得注意的是,最近报道了用分子动力学计算机模拟研究纳米材料的致密化过程和形变。纳米Cu丝的模拟结果表明,高密度晶界对力学行为和塑性变形过程中的晶界迁移有显著影响。纳米晶(3~5nm)Ni在低温高载荷塑性变形的模拟结果显示,其塑性变形机制主是界面的粘滞流动、晶界运动和晶界旋转,不发生开裂和位错发散,这与粗晶材料是截然不同的。
3)纳米晶金属的磁性
早期的研究发现。纳米晶Fe的饱和磁化强度试比普通块材a-Fe约低40%。Wagner等用小角中子散射(SANS)实验证实纳米晶Fe由铁磁性的晶粒和非铁磁性(或弱铁磁性)的界面区域构成,界面区域体积约占一半。纳米晶Fe的磁交互作用不仅限于单个晶粒,而且可以扩展越过界面,使数百个晶粒磁化排列。
Daroezi等证实球磨形成的纳米晶Fe和Ni的饱和磁化强度与晶粒尺寸(50mm~7nm)无关,但纳米晶的饱和磁化曲线形状不同于微米晶材料。随着晶粒减小,矫顽力显著增加。Schaefer等报道,纳米晶Ni中界面原子的磁拒降低至0.34mB/原子(块状Ni为0.6mB/原子),界面组份的居里温度(545K)比块状晶体Ni的(630K)低。最近的研究还发现,制备时残留在纳米晶Ni中的内应力对磁性的影响很大,纳米晶Ni的饱和磁化强度与粗晶Ni基本相同。
Yoshizawa等报道了快淬的FeCuNbSiB非晶在初生晶化后,软磁性能良好,可与被莫合金和最好的Co基调合金相媲美,且饱和磁化强度很高(Bs约为1.3T)。其典型成份为Fe73.5Cu1Nb3Si13.5B9称为"Finemet"。性能最佳的结构为a-Fe(Si)相(12~20nm)镶嵌在剩余的非晶格基体上。软磁性能好的原因之一被认为是铁磁交互作用。单个晶粒的局部磁晶体各向异性被有效地降低。其二是晶化处理后,形成富Si的a-Fe相,他和磁致伸缩系数ls下降到2′10-6。继Finemet之后,90年代初又发展了新一族纳米晶软磁合金Fe-Zr-(Cu)-B-(Si)系列(称为'Nanoperm")。退火后,这类合金形成的bcc相晶粒尺寸为10~20nm,饱和磁化强度可达1.5~1.7T,磁导率达到48000(lkHz)。铁芯损耗低,例如,Fe86Zr7B6Cu1合金的铁芯损耗为66mW·g-1(在1T,50Hz条件下),比目前做变压器铁芯的Fe78Si9B13非晶合金和bccFe-3.5%Si合金小45%和95%,实用前景非常诱人。
4)催化及贮氢性能
在催化剂材料中,反应的活性位置可以是表面上的团簇原子,或是表面上吸附的另一种物质。这些位置与表面结构、晶格缺陷和晶体的边角密切相关。由于纳米晶材料可以提供大量催化活性位置,因此很适宜作催化材料。事实上,早在术语"纳米材料"出现前几十年,已经出现许多纳米结构的催化材料,典型的如Rh/Al2O3、Pt/C之类金属纳米颗粒弥散在情性物质上的催化剂。已在石油化工、精细化工合成、汽车排气许多场合应用。
Sakas等报道了纳米晶5%(inmass)Li-MgO(平均直径5.2nm,比表面面积750m2·g-1)的催化活性。它对甲烷向高级烃转化的催化效果很好,催化激活温度比普通Li浸渗的MgO至少低200°C,尽管略有烧结发生,纳米材料的平均活性也比普通材料高3.3倍。
Ying及合作者利用惰性气氛冷凝法制成高度非化学当量的CeO2-x纳米晶体,作为CO还原SO2、CO氧化和CH4氧化的反应催化剂表现出很高的活性。活化温度低于超细的化学当量CeO2基材料。例如,选择性还原SO2为S的反应,可在500°C实现100%转换,而由化学沉淀得到的超细CeO2粉末,活化温度高达600°C。掺杂Cu的Cu-CeO2-x纳米复合材料可以使SO2的反应温度降低到420°C。另外,CeO2-x纳米晶在SO2还原反应中没有活性滞后,且具有超常的抗CO2毒化能力。还能使CO完全转化为CO2的氧化反应在低于100°C时进行,这对冷起动的汽车排气控制非常有利。值得注意的是这样的催化剂仅由较便宜的金属构成,毋须添加资金属元素。
FeTi和Mg2Ni是贮氢材料的重要候选合金。其缺点是吸氢很慢,必须进行活化处理,即多次地进行吸氢----脱氢过程。Zaluski等最近报道,用球磨Mg和Ni粉末可直接形成化学当量的Mg2Ni,晶粒平均尺寸为20~30nm,吸氢性能比普通多晶材料好得多。普通多晶Mg2Ni的吸氢只能在高温下进行(如果氢压力小于20Pa,温度必须高于250°C),低温吸氢则需要长时间和高的氢压力,例如200°C、120bar(lbar=0.1Mpa),2天。纳米晶Mg2Ni在200°C以下,即可吸氢,毋须活化处理。300°C第一次氢化循环后,含氢可达~3.4%(inmass)。在以后的循环过程中,吸氢比普通多晶材料快4倍。纳米晶FeTi的吸氢活化性能明显优于普通多晶材料。普通多晶FeTi的活化过程是:在真空中加热到400~450℃,随后在约7Pa的H2中退火、冷却至室温再暴露于压力较高(35~65Pa)的氢中,激活过程需重复几次。而球磨形成的纳米晶FeTi只需在400℃真空中退火0.5h,便足以完成全部的氢吸收循环。纳米晶FeTi合金由纳米晶粒和高度无序的晶界区域(约占材料的20%~30%)构成。
4纳米材料应用示例
目前纳米材料主要用于下列方面:
l)高硬度、耐磨WC-Co纳米复合材料
纳米结构的WC-Co已经用作保护涂层和切削工具。这是因为纳米结构的WC-Co在硬度、耐磨性和韧性等方面明显优于普通的粗晶材料。其中,力学性能提高约一个量级,还可能进一步提高。高能球磨或者化学合成WC-Co纳米合金已经工业化。化学合成包括三个主要步骤:起始溶液的制备与混和;喷雾干燥形成化学性均匀的原粉末;再经流床热化学转化成为纳米晶WC-Co粉末。喷雾干燥和流床转化已经用来批量生产金属碳化物粉末。WC-Co粉末可在真空或氢气氛下液相烧结成块体材料。VC或Cr3C2等碳化物相的掺杂,可以抑制烧结过程中的晶粒长大。
2)纳米结构软磁材料
Finemet族合金已经由日本的HitachiSpecialMetals,德国的VacuumschmelzeGmbH和法国的Imply等公司推向市场,已制造销售许多用途特殊的小型铁芯产品。日本的AlpsElectricCo.一直在开发Nanoperm族合金,该公司与用户合作,不断扩展纳米晶Fe-Zr-B合金的应用领域。
3)电沉积纳米晶Ni
电沉积薄膜具有典型的柱状晶结构,但可以用脉冲电流将其破碎。精心地控制温度、pH值和镀池的成份,电沉积的Ni晶粒尺寸可达10nm。但它在350K时就发生反常的晶粒长大,添加溶质并使其偏析在晶界上,以使之产生溶质拖拽和Zener粒子打轧效应,可实现结构的稳定。例如,添加千分之几的磷、流或金属元素足以使纳米结构稳定至600K。电沉积涂层脉良好的控制晶粒尺寸分布,表现为Hall-Petch强化行为、纯Ni的耐蚀性好。这些性能以及可直接涂履的工艺特点,使管材的内涂覆,尤其是修复核蒸汽发电机非常方便。这种技术已经作为EectrosleeveTM工艺商业化。在这项应用中,微合金化的涂层晶粒尺寸约为100nm,材料的拉伸强度约为锻造Ni的两倍,延伸率为15%。晶间开裂抗力大为改善。
4)Al基纳米复合材料
Al基纳米复合材料以其超高强度(可达到1.6GPa)为人们所关注。其结构特点是在非晶基体上弥散分布着纳米尺度的a-Al粒子,合金元素包括稀土(如Y、Ce)和过渡族金属(如Fe、Ni)。通常必须用快速凝固技术(直接淬火或由初始非晶态通火)获得纳米复合结构。但这只能得到条带或雾化粉末。纳米复合材料的力学行为与晶化后的非晶合金相类似,即室温下超常的高屈服应力和加工软化(导致拉神状态下的塑性不稳定性)。这类纳米材料(或非晶)可以固结成块材。例如,在略低于非晶合金的晶化温度下温挤。加工过程中也可以完全转变为晶体,晶粒尺寸明显大干部份非晶的纳米复合材料。典型的Al基体的晶粒尺寸为100~200nm,镶嵌在基体上的金属间化合物粒子直径约50nm。强度为0.8~1GPa,拉伸韧性得到改善。另外,这种材料具有很好的强度与模量的结合以及疲劳强度。温挤Al基纳米复合材料已经商业化,注册为GigasTM。雾化的粉末可以固结成棒材,并加工成小尺寸高强度部件。类似的固结材料在高温下表现出很好的超塑性行为:在1s-1的高应变速率下,延伸率大于500%。
5结语
在过去十多年里,尽管纳米材料的研究已经取得了显著进展,但许多重要问题仍有待探索和解决。诸如,如何获得清洁、无孔隙、大尺寸的块体纳米材料,以真实地反映纳米材料的本征结构与性能?如何开发新的制备技术与工艺,实现高品质、低成本、多品种的纳米材料产业化?纳米材料的奇异性能是如何依赖于微观结构(晶粒尺寸与形貌、晶界等缺陷的性质、合金化等)的?反之,如何利用微观结构的设计与控制,发展具有新颖性能的纳米材料,以拓宽纳米材料的应用领域?某些传统材料的局域纳米化能否为其注入新的生命力?如何实现纳米材料的功能与结构一体化?如何使纳米材料在必要的后续处理或使用过程中保持结构与性能的稳定性?等等。这些基本问题是进一步深入研究纳米材料及其实用化的关键,也是纳米材料研究被称为"高风险与高回报并存"的原因。
【纳米材料行业现状(6篇) 】相关文章:
小型超市店长工作总结范文(整理7篇 2024-10-10
护士个人工作总结范文(整理2篇) 2024-09-14
教学质量教学工作总结范文(整理7篇 2024-09-04
工作总结范文(整理10篇) 2024-08-26
幼儿园教师年度考核个人工作总结范 2024-08-14
售后客服试用期工作总结范文(整理4 2024-08-02
小学学校工作总结范文(整理5篇) 2024-06-19
城市污水集中处理设施(6篇) 2024-11-02
纳米材料行业现状(6篇) 2024-11-02
绿色建筑的认识(6篇) 2024-11-02